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SUMMARY 

The propagation of sounds and pulse waves within the cardiovascular 

system is subject to strong dissipative mechanisms. To investigate the effects 
of viscosity on dissipation as well as  dispersion of small pressure signals in 

arteries and veins, a parametric study has been carried out. A linearized 
analysis of pressure waves in a cylindrical membrane that contains a viscous 

fluid and whose wall is isotropically viscoelastic indicates that there are  two 
families of &symmetric waves--a family of slow waves and one of fast waves, 

The family of slow waves has been studied earlier by Womersley") and others, 
while the fast waves have only recently been examined theoretically to some extent 
by Atabek and Lew. 11) Experimental evidence of the existence of the two families 
was given by Van Citters14) for rubber tubes and Anliker et al. 13) for arteries 
and veins under in-vivo conditions. 

It is shown that the faster waves a re  more sensitive to variations in the 
elastic properties of the medium surrounding the blood vessels. At high Reynolds 

numbers the attenuation due to fluid viscosity over a fixed length is found to be 
substantially greater for the fast waves than for the slow waves. At very low 

Reynolds numbers the effects of attenuation are reversed--that is, the family of 
slow waves is much more strongly attenuated than the family of fast waves. 

The radial displacements are generally much larger for the slow waves 

than for the fast waves, while conversely the axial displacements are  much larger 
for the faster waves than for the slow waves. For the family of slow waves the 
axial wall displacements are larger than the radial displacements for sufficiently 
low frequencies. The presence of external constraints modifies these results. 

For the slow waves the phase angle between pressure and radial wall 
displacement is virtually negligible for mild external constraints, while the phase 
angles between pressure and fluid velocity a re  at most 45'. The corresponding 

phase angles for the fast waves exhibit much larger variations with changes in the 
elastic properties of the surrounding medium. 

The theoretical predictions for an elastic membrane are in good agreement 
with the limited quantitative experimental results of Van Citters") for a latex 
rubber tube. A comparison with the in-vivo data of Adiker et al.13) shows 

clearly that the dissipation due to fluid viscosity alone can not account for the 



observed attenuation and does not have the proper frequency dependence. For 
physiologically meaningful parameter values and high frequencies, the theoretical 
analysis confirms that the damping due to blood viscosity is much less than that 
due to the viscoelasticity of the wall material for both families of waves. 
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I. INTRODUCTION 
A. Physiological Considerations 

The circulatory system performs the vital logistic function of transporting 

blood throughout the body. Investigation and research of the circulatory system is 
basically motivated by humanitarian goals but such research has certainly been 
enhanced and stimulated by the manned space program. 

The circulatory system is a complex network of distensible, tapered, and 

branching tubes with the heart a s  a pump. Blood pressure and pulse rate are just 
two of the basic parameters which indicate the operational capabilities of such a 
mechanical system and which have become basic parameters in clinical medicine. 

A quantitative analysis of the dynamics of the circulatory system is consid- 

erably more formidable than similar investigations of most engineering systems. 
The blood itself is a non-Newtonian fluid that exhibits the characteristics of solutions 

and colloidal and particle suspensions. The apparent viscosity of blood varies with 
hematocrit and strain rate. The hematocrit is a measure of the relative volume of 
the blood in particle form. Controlled experiments') have shown that the apparent vis- 

cosity increases with hematocrit, decreases with strain rate andhas a viscosity coefficient 
that ranges from 1 centipoise to 10 poise. However, McDonald 2) reports that blood 

in the larger arteries and veins behaves like a Newtonian fluid and normally has a 
viscosity coefficient of approximately 4 to 7 centipoise. No marked manifestations 
of non-Newtonian behavior a re  observed in large blood vessels. Even though blood 

exhibits compressibility, it has negligible effects on the transmission properties 
of the usual types of waves that may occur in blood vessels3). 

The experiments of Bergel') and those of McDonald and Gessner') show that 

the blood vessel walls are viscoelastic with material properties that depend more 
strongly on strain than strain rate. Also, blood vessels a re  essentially incompres- 

sible and, therefore, have a Poisson's ratio of approximately 0. 52). Experimental 
data 2) further indicates that the modulus of elasticity for the artery varies from 

6 2 8 2 about 10 dynes/cm to 10 dynes/cm , The viscoelastic modulus can be of the 

order of 25% of the elastic modulus 4' 5), Geometrically, the blood vessels a re  
tapered tubes with the ratio of wall thickness to radius ranging from about 0.05 to 
0.30 for arteries and about 0.01 to 0.05 for veins. 

The blood vessels are imbedded in tissues, muscle or bone and are usually 
constrained by these surroundings. The effects of this surrounding medium upon 

the wave transmission characteristics of blood vessels have not yet been studied 
quantitatively and qualitative data a re  fragmentary. 
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B. Previous Theoretical Investigations 

Numerous theoretical studies of the dynamic behavior of blood vessels have 

been reported in the literature. Comprehensive reviews of such investigations have 
been made by McDonald2), Rudinger'), Skalak7) and Fung'). The complexities of 

the physical and geometric features of blood vessels necessitate an approximate 

approach in any analysis of their motion. By introducing simplifying yet realistic 

assumptions and a mathematical model for the mechanical behavior of the vessels, 
it is possible to arrive at a tractable analytical formulation of dynamic problems 

such as the prediction of the dispersion and attenuation of waves. 
The theoretical analyses of dynamic problems of blood vessels can be sep- 

arated into two major groups on the basis of the relative rigor with which the solid 
o r  fluid mechanics aspects have been treated. Recent contributions emphasizing 

Womersley") and Atabek and Lew"), The work presented here is an extension 

of these efforts and is based on a similar mathematical model. 
The analytical model introduced by Morgan and Kiely') for studying the motion 

of the vessel and the blood contained in it treats the vessel wall as a linear elastic, 
homogeneous, isotropic, cylindrical membrane with circular cross section and 

assumes that the blood behaves like an incompressible, Newtonian fluid in laminar 
motion. With this model the vessel wall does not resist local bending and therefore 

its motion should be restricted to one involving small changes in the radii of curva- 
ture. They also neglected the constraints of the surrounding medium, and further 
simplified the boundary value problem by linearization and order of magnitude 

estimates. Assuming a solution form which requires a wave travelling along the 

tube, they obtained a quadratic equation for wave speed and attenuation. This 
equation was solved for the limiting cases of very low frequencies and for very low 

o r  very high fluid viscosity. One root of the quadratic equation produced an in- 
finite wave speed in the inviscid limit and was therefore rejected as physically 

unrealistic. Furthermore, Morgan and Kiely demonstrated that the dynamic be- 

havior of viscoelastic materials, which are dominantly elastic and subjected to a 
wave motion, can be obtained from the corresponding elastic analysis by interpreting 
the elastic modulus and Poisson's ratio as complex quantities. They thus demon- 

strated the applicability of the correspondence principle for linear viscoelastic 
materials to their wave propagation problem. 

a realistic formulation of the fluid-dynamic aspects were made by Morgan and Kiely 9) , 

2 



Womersley") also used this model but added a distributed, axial, elastic 
constraint acting on the outside surface of the vessel to approximate the effects of 
the surrounding medium. He also assumed a travelling wave solution and obtained 

a quadratic equation for the wave speed and attenuation. The solution corresponding 
to the root retained by Morgan and Kiel? 
restriction to limiting cases. 

was investigated numerically without 

The analyses by Morgan and Kiely') and by Womersley") have become key 
references. In both studies the wave reflections were neglected and, since one of 
the roots of the quadratic equation was rejected, only one type of wave was consid- 
ered. Therefore, only one boundary condition at one axial location is required to 

determine the solution. However, this solution is not sufficiently general to 
accommodate additional constraints such as those enforced by branches and bi- 

furcations or  by the application of instruments such as electromagnetic flowmeters. 

distributed radial constraints a r e  present. Womersley's results") predict at most 
a 15% change in the speed of the wave studied for arbitrary variations in the axial 

constraint and for all Reynolds numbers. By contrast, the addition of an infinite 
radial constraint besides an infinite axial constraint produces a rigid tube incapable 
of transmitting waves when filled with an incompressible fluid. It appears, there- 
fore, that radial constraint may play an important role and should be taken into 
consideration. 

Atabek and Lew") investigated the wave propagation characteristics of 

A further inadequacy of the Womersley solution") manifests itself whenever 

two types of waves corresponding to each of the two roots of the quadratic equation 
using the basic model above. Aside from considering two types of waves, they also 
examined the effects of initial stresses upon the transmission characteristics of the 
waves. However, they disregarded the presence of external constraints. 

In a recent parametric study of waves in blood vessels, Maxwell and Anliker 3) 

treated the blood as an inviscid, compressible fluid and assumed the vessel wall to 

behave like a cylindrical shell with viscoelastic wall properties. In contrast to a 
membrane model, the shell model exhibits resistance to local bending in the vessel 

wall and thus allows the study of a wider class of motions by relaxing the restriction 

to very small changes in the radii of curvature. The effects of initial stresses a re  
taken into account but external constraints are  disregarded. Three wave types were 
predicted. For both axially symmetric and non-axially symmetric mode shapes, 
the waves were characterized by the dominant displacement component that an 

3 



arbitrary point of the middle surface exhibits at higher frequencies. Accordingly , 
these waves can be referred to as radial, circumferential, and axial waves. The 

characteristics of the axially symmetric radial waves are in agreement with 
Womersley's results") for very small fluid viscosity, and the basic properties of 

axially symmetric radial and axial waves a re  in partial agreement with the results 
of Atabek and Lew") for the inviscid limit. 

In contrast to earlier theoretical investigations , Maxwell and Anliker') also 
presented a detailed parametric study of the mode shapes associated with each 

wave type in addition to the corresponding dispersion and attenuation. The mode 
shapes a re  useful features that facilitate the identification of different waves in 
experiments. 

C. Experimental Studies of Radial and Axial Waves 
Most of the experimental data on dispersion and attenuation of radial waves 

(pressure waves) given in the literature has been derived from a harmonic analysis 

of the natural pulse wave generated by the heart. These data may have to be 
reassessed since there is increasing evidence that the transmission of the natural 

pulse is affected by nonlinear phenomena 12' "I. By utilizing artifically induced 
pressure signals in the form of finite trains of sine waves13), it was shown that 

the aortae of anesthetized dogs a re  only mildly dispersive for frequencies between 

40 and 200 cps. Also, in this frequency range radial waves exhibit strong attenua- 

tion that is primarily due to dissipative mechanisms in the vessel wall. Moreover, 
the amplitude of the radial waves portrays the same experimental decay pattern 
with distance measured in wave lengths. 

Experimental evidence of the presence of axial and radial waves in fluid 
filled, thin walled latex rubber tubes simulating blood vessels was given by 

Van Citters14). Both types of waves were simultaneously generated by a step 

variation in pressure at one end of the tube. The axial wave had much larger axial 
wall displacements and a higher speed than the radial wave. Moreover, the axial 

wave could easily be attenuated by manually gripping the tube. The observations 
made by Van Citters have since been p a r t i a l l y  corroborated in References 3 and 11. 

The literature to date does not report the natural occurrence of axial waves 
in arteries and veins. Systematic experimental data on the dispersion and attenua- 

tion of induced axial waves have only now become available15). A comparison of 
these results with theoretical predictions will be given in the body of the report. 
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D. Intent and Scope of this Analysis 
The main objective of the present theoretical analysis is a parametric 

study of the effects of blood viscosity, distributed external constraints, and visco- 
elastic properties of the vessel on the transmission characterisitcs of radial and 

axial waves. To this end, a mathematical model is introduced, which is similar to 

those in References 9 to 11. It differs from them by the inclusion of radial con- 

straints and by considering the vessel - wall to be viscoelastic. 

The arrangement of this report reflects the actual sequence of the studies con- 
ducted. In Section 11, the boundary value problem is derived and linearized with 
emphasis upon the main conditions of linearization. Section III is devoted to the 

general solution and specific results corresponding to limiting cases for infinite 
radial and/or axial constraint and for large or  small Reynolds number. The results 
of the parametric analysis for the transmission charmteristics , including velocity 
profiles and numerical examples are described in Section IV. A comparison of 
experimental results with theoretical predictions is given in Section V. Finally, the 

conclusions are presented in Section VI. 



11. THE LINEARIZED BOUNDARY VALUE PROBLEM 

A. Statement of Boundary Value Problem 
The basic problem of interest is the motion of a blood vessel and the blood 

it contains when this system is subjected to an oscillatory perturbation. However , 
only the motion of a model of this system is actually analyzed. A steadystate 
configuration (Figure 1) consisting of a long, cylindrical tube containing a steaming 
Newtonian fluid is perturbed such that axially symmetric motion with no circumfer- 
ential velocity is obtained. The perturbation is assumed to be sufficiently small to 
justify linearization. Therefore, all dependent variables can be expressed in the form 

where 
( ) = the value of a variable in the perturbed state 
( &= the value of a variable in the steady state 

( )I= the perturbation to the variable. 

Since the desired boundary value problem is linear , harmonic solutions for a given 

frequency can be obtained and more general motions can be studied using Fourier 
analysis. 

The wall material is assumed to be isotropic, homogeneous and elastic in the 
initial par t  of the analysis. Furthermore, the tube is assumed to have a wall 
thickness to radius ratio 

and to behave like a membrane with constant strains and stresses across the wall. 
Since the problem is axially symmetric , the wall displacements , stresses and strains 

are functions only of axial distance and time. To render the membrane assumption 
realistic, the displacements will be limited to those producing very small changes in 
the radii of curvature. This is achieved with the restriction 

where L is any characteristic axial dimension. 

B. Equations of Motion and Kinematic Boundary Conditions for the Fluid 
In cylindrical coordinates the equations for conservation of mass and momen- 

tum for an incompressible Newtonian fluid are 
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where the radial and axial velocity components (u and w) and the pressure (p) 

a r e  the dependat variables. 
The kinematic boundary condition for a viscous fluid postulates no relative 

motion between the fluid and its boundaries (the no-slip boundary condition). 

where 3 and 5 are respectively the radial and axial displacements of the middle 
surface of the membrane and 

a= R, t F(a,t> P - 9 )  

is the radial coordinate for the membrane displaced from its steady state equil- 

ibrium position (r = Ro) 
The linearization of these equations and the conditions for the applicability of 

the resulting solutions can be simplified by means of an order of magnitude 
analysis. The equations (11-4) to (11-8) are expressed in a nondimensional form 
such that all variables and derivatives are of order one. To this end the mean 

tube radius, Ro, and an average axial velocity, W, are chosen as nondimensional- 

izing parameters for r and w, respectively. Nondimensionalizing parameters 
for the other variables (T, L, U ,  P, zR, and qR ) are obtained on the basis of 
physical arguments and the conservation equations. Therefore, the underlined, 

nondimensional variables 
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will be assumed to be of order one. 
Substitution of (If-10) and (11-11) into (II-4) yields 

(II-11) 

The steady state solution satisfies this equation identically. In the unsteady 

case the equation requires that both terms be of equal order and, therefore, 

(11-12) 

(11-13) 

Substitution of (II-lo), (11-11) and (11-12) into (It-5) and (11-6) yields 

The linearization of (11-14) and (11-18) requires the assumption 

WT -i- << I (11-16) 

Application of (II-3) and (IT-&%) in (11-14) and (II-15) and retention of the lowest 
order terms for the inertial and viscous forces leads to 

8 
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(II-18) 

In each of these two equations, the inertial and viscous terms have the same 
ratio. However, the ratio of the pressure gradient term to either the inertia or  
viscous term is larger in (II-17) than in (11-18). Since the axial pressure gradient 

induces the flow, the pressure gradient term in (II-18) must be the same order as 
either the inertia or viscous terms. Therefore, equation (II-17) requires that the 

radial pressure gradients must vanish and thus, (II-17) and (II-18) can be reduced to 

(IT-19) 

(II-20) 

In dimensional form equations (II-13), (II-19) and (II-20) can be written as 

(II-21) 

(II-22) 

(11-23) 

and constitute the lowest order system defining the motion of the fluid. It is of 

interest to note that the solution to the well knownPoiseuille flow problem 

and 

(II-24) 

(II-25) 

also is the steady state solution of the lowest order system (II-21) to (II-23). 

state position requires 

,The assumption of small displacements of the membrane about the steady 
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S R  - << I 
Rcb 

and (It-26) 

With (11-26) the fluid velocity components at each point of the membrane wall can 

then be expanded abu t  the corresponding equilibrium position of the point. The 
substitution of these expansions into the boundary conditions (11-7) and (11-8) yields 
after nondimensionalization the relations 

and 

and 

Application of the assumptions (11-3) and (11-16) to these equations produces 

as the nondimensional lowest order equations for the no-slip boundary condition. 
The corresponding lowest order equations in dimensional form are 

C. The Equations of Motion for the Wall 

The equations of motion for the wall are determined by the conditions of 
dynamic equilibrium for a wall element extending from 2 to 5 -+ d t  and 0 to 

8 -+ d 6  , as shown in Figure 1. The element is subjected to constraint forces 
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acting on the outer surface, viscous shearing stresses acting on the inner 
surface, inertia forces , hoop tension, and axial tension. 

The stress dyadic for the interior fluid is 

where 

(11-29) 

(11-30) 

Substitution of (11-9) and (11-10 into (11-29) and (11-30) yields 

From (II-lg), the ratio of viscous forces to pressure forces is 

This ratio cannot be greater than one for this problem, therefore, 

and, to lowest order, the fluid stress components are 

(11-31) 

For the assumed small displacements, the slope of the surface element is small, 
which implies that the angle subtended by the normal of the surface element and 

the radial direction, 8, , as shown in Figure 1, is also small. Under such con- 
ditions one can make the approximations 
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and 

(11-32) 

(11-33) 

By combining (11-28), (11-31), and (11-33) one obtains the linearized form of the 
viscous force exerted on the inner surface of the membrane element: 

Adhering to (11-1) can express the axial and circumferential membrane forces per 
unit length as: 

(11-35) 

Also, with axial symmetry and linear wall behavior, the unsteady strain com- 

ponents a re  

The application of Hooke's law yields the relations 

Since the mechanical properties of the biological tissue surrounding the blood 

vessels are not well defined, Womersley introduced a n  elastic axial constraint 
which is applied to the external surface of the membrane and which exerts an 

) K, 5 axid  force - ( Q  de coset 
addition to this constraint force, an independent, elastic, radial constraint force 

that inhibits axial displacements. In d t  

) K, that opposes the radial displacements was introduced d.t 
-cci d e  Cos&, 

in this analysis. Here i(, and rC, are  stresses per  unit displacement in the 
corresponding directions. With this model for the surface stresses on the outside 

12 



of the membrane element, the fluid pressure must be referred to the pressure in 

the surrounding medium. 
The force balance on the element of Figure 1 in the presence of the constraints 

introduced above requires 

Expanding the last term into a Taylor series, making use of (II-32) and (II-34) to 

(II-37), and retaining only linear terms in and 5 one obtains 

(II-38) 

These relations must be true for zero wall displacements which requires 

Tes = Re 4% 
and 

(II-39) 

(II-40) 



(11-41) 

Substitution of (11-36) , (11-37) (11-40) and (II-41) into (11-38) and (11-39) yields 

(11-42) 

These equations differ from those given by Womersley by the inclusion of a 
radial constraint term, -K,$ , and by the expansions within the brackets represent- 
ing the effects of a mean transmural pressure, an initial axial tension, and a shear- 

ing force due to the mean flow. With the exception of both constraint terms, the 
difference between (IT-42) and (IT-43) and the equations derived by Atabeck and Lew 
is more subtle. These authors considered perturbations about a steady-state 

equilibrium configuration defined by a constant axial tension, Tzsy and by a con- 
stant internal pressure causing a circumferential tension, T e  s. They did not 
include the effects of a mean flow. However, they accounted for the rotation of the 
hoop stress acting on a surface element during its displacement by the addition of a 
term -(d#ht) ( Tes /RJ but they fail to note that this term is actually cancelled 
by the identical rotation of the pressure force acting on the internal surface of the 

element. 

D. Summary of the Linearized Boundary Value Problem 
A s  a first step, the effects of radial and axial constraints on the transmission 

characteristics of waves in blood vessels are being investigated for zero mean flow 
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and no initial stresses. Therefore, the bracketed terms in (11-42) and (11-43) 
may be dropped and the equations of motion for the wall can be reduced to 

With the substitution of (E-l), (11-24) and (11-25) into (II-21) to (TI-23) and (11-27), 

the differential equations for the fluid velocity and pressure perturbations become 

and the boundary conditions can be expressed as 

(TI-46) 

(11-47) 

(11-48) 

(II-49) 
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III. SOLUTION OF THE LINEARIZED BOUNDARY VALUE PROBLEM 
A. 

The complete linearized boundary value problem is given by Equations 

(11-44) to (11-49). By differentiating (11-47) with respect to R- and making use of 

(11-48) one obtains 

(III-1) 
aw' 

For the axially-symmetric case (aW//an) 
oscillatory term in & u ? a ~  is possible. Therefore, a separable harmonic solution 
can be given in the form 

= 0 , which means that no purely &=Ro 

The substitution of (III-2) into (111-1) yields 

Changing theindependent variable using 

leads to 

which is Bessel's equation for functions of order one. The general solution of this 
equation is 

However, substitution of this into (m-2) and application of the symmetry requirement, 

( >W''bfiLm = 0 , yields %= o 
I 

and 

or ,  after integration, 
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Substitution of (111-5) into (11-47) gives an oscillatory expression €or 
which can also be integrated and expressed in the form 

From (ID-5) and (III-7), i f  follows that 

By substituting (ID-8) into (11-46) and integrating with respect to one obtains 

where the function of z and c generated by this integration must vanish since 
U'CF, t,t) vanishes for R = 0 . 

The expressions for af /&t  and bc/>t given by (11-49), (111-8) and 
(III-9) can be integrated with respect to time to yield the oscillatory solution 

(111-11) 

According to (111-8), the unsteady mass flux can be written in first approx- 
imation 

17 

ir 



Substitution of (III-6), (III-8), (111-10) and (111-11) into (II-44) and (11-45) 
leads to 

where 

(In-20) 

111 

Elimination of F (Z) from (111-13) and (111-14) and integration of the resulting 

equation gives 

where 
18 
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By combining (III-21) and (m-13) one obtains 

Equation (III-23) then has the general solution 

(III-24) 

(III-25) 

(III-26) 

where 6, and 8, are the roots of the equation 

0=+ + A q = o  

From (III-26) and (m-21) one finds 
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Substitution of (Ill-26) and (III-28) into @U-6), (III-8), (m-9) ,  (DI-lo) and (m-11) 

completes the formal solution. The resulting expression for .Q' can be given as 

where 

The pressure pulse is often resolved into its Fourier components in 
I 

studying wave motion. Therefore, it is most convenient to wri te  )p in the form 

p i t ,  t )  

It is also convenient to express the other quantities such that the phase relationship 
withrespect to the pressure waves is exhibited. Substitution of (III-26), p - 2 8 ) ,  

(III-32) and (IU-33) into (III-s), (IU-9), (III-lo), (III-11) and (III-12) yields 
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(m-35) 

(III-36) 

(III- 38) 

where 

21 

(III-40) 



i4, 
tJ\,Q. =-;  

M,db8 = - i  

(m-43) 

(m-44) 

m - 4 5 )  

@I-47) 

Equations (III-31) and (m-34) to (m-47) are the solution for fluid velocity, 

wall displacement, fluid mass flow and fluid velocity on the axis as a function of 

time and position with six parameters (u', p, , &, o( , 
arbitrary constants (e  , , P3 and pq ). This solution predicts four waves 
travelling in the axial direction. These four waves actually constitute two different 

types of waves each with a transmitted wave (wave moving in the + Z  direction) 
and a reflected wave (wave moving in the 
type a re  identical except for the direction of propagation. The four arbitrary 
constants determine the strength of the four waves. 

, and r2 ) and four 

- E direction). The waves of the same 

The parameters cr and ('3, are functions only of physical and geometric 

properties of the fluid and the wall. The parameters pZ and o( are functions of 
the physical and geometric properties and of the frequency. The external con- 
straint parameters and rz reflect the character of the external constraints. 

It is important to note that has the form of the square root of an unsteady 

Reynolds number or  
22 



The Reynolds number referred to hereafter is the one defined by (III-48). 

The wave speeds ( C , / C ,  and Cz /Ce), attenuation factors ( s, and &) 

and the mode shapes as given by the magnitudes ( M, to WS) and phase angles 
( 6, to 4 ) a re  of course functions only of the six parameters 

or  Re , r, , and G), However, the functional relationships a re  complex and 
a parametric study is necessary to illustrate them. The range of physical and 
geometric properties that determine CT and 8, are known. The range for B, 
and o( should be as broad a s  possible but consistent with the long wave length 

approximation which arises by applying (If-3) to wave motion. 

(r,  @, , p, , cy 8 

where L'= I OR 2 (In-49) 

Since the constraint parameters, and , have not yet been determined, it 
is important to know what range of these parameters significantly affect the solu- 
tion. Considerable insight into the effects of change in and can be 
obtained from the various limiting forms of the solution including those corres- 
ponding to small and large Reynolds number. 

B. Solution for Limiting Values of Reynolds Number or  Large Constraint 
Parameters 

1. Motivation for the Limiting Cases of Solution 
The general solution is complicated by the occurrence of Bessel functions 

with their argument proportional to the square root of Reynolds number. It can, 
however, be simplified considerably for limiting values of Reynolds number by re- 
taining only the first few terms of the series and asymptotic expansions of the Bessel 
functions for small and large Reynolds numbers respectively and other simplified 
forms of the general solution can be given for limiting large values of the constraint 

parameters. 

2. Solutions for Large and Small Reynolds Number 
For large Reynolds number , at is large and the modulus and phase for 

the Kelvin functions 
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(ID'-52) 

Substitution of (m-51) and (III-52) into (m-17) to (III-47) and retention of only the 
terms of order 1 and l/o( yields 

(III-53) 

w - 5 4 )  

(nr-55) 

(ID'-59) 
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where 

(In-6 1) 

(111 -6 2) 

(111-63) 

(111-66) 

(111 - 6 8) 



I 

A and A 
second type of wave are not valid whenever (&&- ~ 1 2 ) )  e K, since in such 

cases the terms of order 1 may be smaller than the terms of order l/oc . 
first three terms in the ascending series for 3,(2) are retained: 

are defined by (III-20) and (m-22). Note that the expansions for the 4 
I 

For small Reynolds numbers, which correspond to small values of o( , the 

Substitution of (III-72) into (IU-17) to (111-47) yields 

m - 7 4 )  
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(In-77) 

(In-79) 

(In-81) 
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where 

Again, A, and A 

stitute the forms for and ms into (III-33). For small o( , the wave speed 
for the first type of waves is directly proportional to 4. Then, for zero o( or 

zero Reynolds number, this wave speed is zero and the wave is completely attenu- 

ated for all values of the remaining parameters provided ( C:/ c: ) $ 0. For 

large Reynolds numbers, the variation of the wave speed and attenuation with 6, , 
&, p, , rz and T is still complicated in spite of the restriction to large 

values of Q(, 

demonstrated below for cr = 0.5, 6, = 10, P.r = 100 representing a set of 

physiologically meaningful values, Figures 2 and 3 show the variation of the wave 

speeds with for r'! = 0. Neither wave speed varies significantly with 
for < lo4, They increase rapidly with increasing radial constraint within the 
range lo4 < < 10 However, for > lo7 ,  the wave speed for the first 

are defined by (III-20) and (m-22). 

To obtain the wave speeds and attenuation factors one merely has to sub- 

The significance of the constraint parameters and r' , is 

7 
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type of waves becomes relatively independent of 

the second type of waves continues to increase. 

straint parameter, rz s for the case of no radial constraint ( r, =o). The wave 
speed of the first type of waves is quite insensitive to axial constraint with its most 
significant variation occurring for 1 f' < 10 , The wave speed for the second 
type of waves, however, is highly sensitive to axial constraint. It increases rapidly 
with increasing axial constraint. Furthermore, from (III-54) and (III-74), it follows 
that the wave speed of the second type of waves becomes infinite for 

, while the wave speed for 

Figure 4 and 5 show the variation of the wave speeds with the axial con- 

3 

fr + \ for the large Reynolds number limit ( oc-r-) 

and 

E+( \+ e )  for the small Reynolds number limit ( -GO)  (ID -8 9) 

For d" = 1/2, (3, = 10, (3, = 100, r, = 0, t. 1 artdinfinite 
Reynolds number , this analysis predicts no motion of the tube wall or  the fluid 
for the second type of waves. Therefore the pressure wave merely travels through 

a stationary, inviscid, incompressible fluid with infinite speed. Since the speed of 
propagation of disturbances in such a fluid is known to be infinite, this type of wave 

is as  physically admissible as the model of the system permits. However, the 
prediction of an infinite wave speed for the second type of waves in the large Reynolds 

number limit lead the authors of Reference 9 to the erroneous conclusion that this 
type of wave is physically inadmissible. Their analysis neglected the inertia terms 
due to wall mass as well as the effects of external constraint , which corresponds to 
the case fi = 1 in the present analysis. 

Two observations from the above results are most important. Both types of 
waves do exist in the large Reynolds number limit. Also, variations of both wave 
speeds with variation in Reynolds number and external constraint between their 
limiting values are very large. 

The results for the large Reynolds number limit ((l/-) = 0) with r= 0 . 5 ,  

e,= 10, = 0 = T' and varying over a wide range are shown on Figures 
6 to 8. The wave speed for the second type of waves is much larger and exhibits 
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an insignificant dependence upon @, . The speed of the first type of waves is also 

constant for large values of & and decreases with decreasing &. From Fig- 
ure  7, the wave length parameter is proportional to Br for the second type of waves 

over the entire range of Pr considered here and also for the first type of waves if  

e,> I or (A/R,,) > z n  . Furthermore, ( A ,  /Ro) = I for &= Oh28 and 

( At/R,) = I 
essentially exponential functions of @'L over that range of p2. 
wave length approximation applies. Iv\ I and Mz are inversely proportional to 

sidered, the phase angles are given by 

for pScr 0.031. Figure 8 shows that the modulii "\, to are 
for which the long 

1 6% while M,to %are inversely proportional to 6, . For all Pz values con- 

Therefore, the radial wall displacement, the fluid flow rate and the fluid 

velocity along the axis are all in phase with the pressure for both types of waves. 

Axial  wall displacement lags the pressure by 90° for the first type of waves and 
leads the pressure by 90° for the second type. Attenuation is, of course, not 

present because the inviscid limit is also an infinite Reynolds number limit. These 
results for the inviscid limit a re  in good agreement with the results for Type I and 

111 axially symmetric waves in the inviscid analysis of Reference 3 for the range 

of fiz where ( X / R ~ )  r 1. 

3. Infinite Radial and Axial Constraint 
For limiting radial and axial constraint, = =W ", (Et-23) re- 

duces to 

and has a solution of the form 

t ZG!)=D, -  R* +D, (rn-90) 

No waves a re  generated in this case. Substitution of (m-90) into (m-21) and per-  

forming the limit process , = - m, yields 

(rn-91) 
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From (m- 6) (rn-8) to (III-11) (III-90) and (III-91) one obtains 

(III-92) 

(rn-9 3) 

(111-94) 

(III-95) 

where 

and 
Therefore, in the presence of very large radial and axial constraints the 

a re  plotted in Figures 9 and 10. Mi4 

solution predicts a harmonic oscillation with an amplitude that varies linearly 

with the axial coordinate. As expected from the nature of the constraints, the 
wall displacements and radial fluid velocity a re  zero. The axial fluid velocity 
and mass flow are  only related to the pressure variation in the tube. 

4. Infinite Radial Constraint 
For infinite radial constraints ( -.coo) and finite axial constraint, 

(III-23) reduces to 

(111-97) 

(111-98) 

with the index defined by 
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The index 4 determines the type of waves. Integrating p - 9 7 ) ,  one obtains 

-si G %, 3- t(?)= 0, e.. + D& - 3 3 ,  +D, (nI-100) 

Finally, substitution of (III-100) and (111-101) into (In-6) and (111-8) to (111-11) 
yields the relations: 

(111-102) 

(III -103) 
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(m-105) 

where 
P 

(III-107) 

From these equations it follows that only one type of pressure wave can 

occur, for Tf + og . These waves all have the property that the total instan- 
taneous mass flow at any cross section is zero at all times. In accordance with 
the constraint they also have no radial wall displacements. Besides this, the 
solution allows for a harmonic pressure fluctuation whose amplitude varies 

linearly with the axial coordinate and that exhibits an axial wall displacement. 
5. Infinite Axial Constraint 

For infinite axial constraint (  WOO) with infinite radial constraint, 
(IlI-23) reduces to 

and has the general solution 

(ID-108) 

(rn-109) 

Tn this case, the type of waves present is determined by 
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Substitution of (ID-109) into (III-21) and application of the limiting process, 

--, yields 

where 

(111-116) 

and wh and 
These equations imply that only one type of waves can exist and that these 

waves have no axial wall displacements. In contrast to the previous limiting cases, 
this solution does not predict a nonpropagating, harmonic pressure fluctuation. 

are given by (III-96). 
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IV. NUMERICAL RESULTS FROM THE GENERAL SOLUTION 
A. A Parametric Analysis 

Various solutions for limiting values of the constraints and Reynolds 
number were described in the previous section and are  illustrated in Figures 2 to 

8. These solutions show that the ranges of , , and Qr for which the 
speed of waves with a long wave length vary significantly are defined by 

For the cardiovascular system, the geometric and physical parameters may be 
limited to 

0.25s C - C O , S  1 s 2s 6 ,  s 2 0  w - 2 )  

At the fundamental pulse frequency, &is of the order lo2.  Since biological 

material is nearly incompressible, Poisson’s ratio, ar , may be taken as 0.5. 

A s  a representative value for Q, , one may choose (3, 10. Therefore, the 
basic parameter values in the parametric analysis were 

The constraint parameters, and , were modified for this para- 

metric study to reflect only the physical parameters of the system: 

In terms of these new constraint parameters, the basic parameter values defined 
by (IV-3) can now be given as 

o’=o.s-  I (3,= lo ~ IO2 ) x,=o) xz= 0 (IV-5) 

2 and the most significant ranges for 7(, and %Z for (32 = 10 are  

I < * ,  IO3 1 7(t 4 GxIo-q  (W -6) 

Figures 11 to 22 give the results of the parametric analysis in terms of 
wave speeds, attenuation coefficients and transmission factors. The transmission 
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factor is defined as exp(-SX/R,) which represents the ratio of the amplitude 
of a sinusoidal wave propagating over a distance of one wavelength to its initial 

value. Results for infinite constraints corresponding to the limiting solutions 
given in the previous section are also shown for comparison. 

In general, the wave speed for the first type of waves increases mono- 
tonically with & 

finite limiting value. For weak radial constraint, it is relatively constant for 
and d 7 3  Whenever the condition ( A, /%)  =Z&fT(C, /co) r7 1 is 

satisfied, the parameters (3, and & have little effect on this wave speed, and a 
change in Poisson's ratio, a- , has no significant effect at large Reynolds numbers. 
Conditions (III-99) and (III-110) indicate that only the first type of waves exists for 
infinite values of either constraint. For arbitrary values of R ,  within the com- 
plete range of axial constraint ( o,<%, & og ), the solution deviates at most by 15% 

from that corresponding to the basic values at all Reynolds numbers. However, 
variations in the radial constraint X, produce marked changes particularly in 
the range 

from a small value at low Reynolds numbers and approaches a 

3 Is%, < to . 
Except for cases with large radial constraints, the wave speed for the 

second type of waves is relatively constant at low Reynolds numbers and increases 
monotonically with increasing Reynolds number. However , changes in Poisson's 
ratio o r  @, produce much larger effects on the speed of this type of wave, while 
a variation in &again has a negligible effect. The speed approaches infinity as either 
constraint parameter becomes unbounded, moreover in the presence of a radial con- 
straint with Y , 7  10 the wave speed is virtually independent of the Reynolds number. 

The attenuation coefficient for the first type of waves, SI , decreases mon- 
otonically with increasing Reynolds number and consequently the transmission factor 

exp(- 5 ,  X I /Re ), increases monotonically. A change in Reynolds number may 
cause very large variations in both quantities. The parameter 6, has no effect 

on either quantity but a variation in Poisson's ratio produces a larger relative change 

(up to 35%) in 6, and in the transmission factor. Over the entire Reynolds number 
range 5, 
dependent of (3% . 
the wave length is proportional to since the wave speed C ,  is independent of 

in the radial constraint ( 0 c ) may change SI and the transmission 

factor by an order of magnitude. For high Reynolds number a change in the 

3 

is inversely proportional to ( j ~  while the transmission factor is in- 
At this point it should be recalled that according to Eq. (ID-49) 

6% . Variations Bz. This implies that the transmission factor is not affected by 

\ -  
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axial constraint ( 0 4 x, Q 00 ) can alter 6, by as much as SO%, while for low 
Reynolds numbers no noticable effect is produced. 

For all cases with weak constraints the attenuation factor for the second 
type of waves, st , first increases with increasing Reynolds number, attains a 
maximum for e 4  5 2.0 or  28 and then decreases monotonically. Except for 
very low Reynolds numbers, Br 
factor. Again, the attenuation coefficient is inversely proportional to & while 

the transmission factor has a negligible dependence on & . At low Reynolds 
numbers, & decreases and the transmission factor increases with increasing 

radial constraint. For very strong radial constraints this behavior is predicted 

for the entire Reynolds number range. With increasing ‘Xz the attenuation coef- 

ficient increases and the transmission factor decreases. For K, ~ S ’ X I Q - ~ ,  the 
transmission factor becomes negligible. 

Results for the mode shape parameters, IJ\, to M,, are shown on 
Figures 23 to 38. pJ\, , the mode shape parameter for the radid displacement of 
the first type of waves, exhibits only a mild dependence upon the Reynolds number 

Poisson’s ratio and PI . Furthermore it is inversely proportional to the square 

of 92 . M, the mode shape parameter for the radial displacement for the 

second type of waves first decreases rapidly, attains a minimum and then increases 
with increasing Reynolds number. This parameter varies significantly with Poissonb 
ratio for all Reynolds numbers. It changes noticeably with PI at high Reynolds 
numbers, and is inversely proportional to the square of PI. for the entire Reynolds 
number range. In the absence of radial and axial constraints, M, is larger than 

M, at small Reynolds numbers, but the reverse is true at larger Reynolds num- 
M, decreases rapidly irrespective of the Reynolds 

can have a significant effect on the transmission 

bers. With increasing X, 
number, while M, 
for all Reynolds numbers when XI a 10 

limit value while at large Reynolds number, wz first decreases with XZ , 
obtains a minimum and then increases. 

decreases rapidly first only at low Reynolds numbers and 
3 With increasing axial constraint , 

M, decreases at large Reynolds number and approaches asymptotically a finite 
. 

The mode shape parameters far axial displacement, M, for waves of 

the first type and wq for waves of the second type exhibit completely different 
parametric variations. At low Reynolds number, MI, increases rapidly while 

M, decreases (for 6 = 0.5) rapidly with increasing Reynolds number. At 
larger Reynolds number both are relatively independent of the Reynolds number , 
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however, FJ\q is in general much larger than M,, 6 ,  
on M, but M, shows a relatively large increase with (3, 
number. Both M, and MY are inversely proportional to & wherever 

increases rapidly with decreasing Poisson's ratio at low 

Reynolds numbers and conversely decreases with decreasing Poisson's ratio at 
large Reynolds numbers. Mq shows exactly the opposite behavior with Poisson's 

ratio. An increase in K, produces a rapid increase in M, at low Reynolds 
number while for large Reynolds numbers f l3 first decreases and then increases 
at higher values for ;K, . On the other hand an increase in 3<, causes a 
decrease in Mq for all Reynolds numbers and an increase in produces an 

increase in M4 at low Reynolds numbers, but for large Reynolds numbers fv\4 

first increases and then decreases. M, decreases with ?& for the entire 
range of Reynolds numbers, 

The mode shape parameters for fluid flow rate, rJ\a for waves of the 

first type and WG for waves of the second type, also show markedly different 
behavior. MS has no noticeable dependence on (3, or  Poisson's ratio. But 

with increasing Reynolds number M5 

asymptotically a limit value. Ms is inversely proportional to (3, . The 

trends of tJ\c with 

has no significant effect 

at large Reynolds 

>> 1. M3 

1 

first noticeably increases and then approaches 

, r and P t  are  identical to those of M y  . While 
Ms is smaller than Mt for small Reynolds numbers the reverse is true at 

large Reynolds numbers. The axial constraint has no effect on M, but produces 
effects on W' which are  similar to the effects on Mu . An increase in -c<1 
causes a decrease of Mg and also a decrease of P4' at low Reynolds numbers. 
However, for large radial constraints, M b  decreases with X, but is virtually 
independent of the Reynolds numbers. 

The mode shape parameters for axial fluid velocity on the axis, rJ\7 

for waves of the first type and M, for waves of the second type, have the same 
trends as  the corresponding mode shape parameters for the fluid rate ws and 

MG . The only exception is the occurrence of a relative maximum-minima at 
moderate Reynolds numbers. 

Figures 39 to 42 illustrate parametric variations of the phase angles 

between radial wall displacement and pressure, 

and $G for waves of the second type. With increasing Reynolds numbers, 
Figures 39 demonstrates that 4, increases from zero, assumes a maximum for 
4 5  Z.b, and then decreases. (3% has no apparent effect on 

and particularly a change in Poisson's ratio can produce large relative variations. 

$, for waves of the first type 

4, , while @ I  
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However, in the absence of constraints, 4, is small. As  can be seen from 

Figure 40, approaches zero with increasing axial constraint for all Reynolds 
numbers, but with increasing radial constraint, the maximum of cb, increases 

slightly and shifts to larger Reynolds numbers. For large radial constraints the 
small phase lead becomes a phase lag with a pronounced minimum at larger 

Reynolds numbers. 
The phase angle 4z displayed in Figures 41 and 42 is very sensitive to 

all parameters. In general, Tbr increases, assumes a maximum, and when KL 
is small decreases to zero as Re increases. As  shown in Figure 41, large 
variations in & a re  predicted for changes in Sr at low Reynolds numbers and 
for changes in 6, at high Reynolds numbers. Also, a change in Poisson's ratio 
produces large variations in $% for all Reynolds numbers but the most interesting 
effect is the shift from 4% = 90° to = Oo at low Reynold's numbers for 
all values of Poisson's ratio except those near 0.5. According to Figure 42 an 
increase of .tC, causes a marked increase of 4% that is particularly noticeable 

at large Reynolds numbers. An increase in 8, generally produces a decrease 

in $z . 
displacement and pressure, Cb3 for the first type of waves and 4, for the 
second type. Except for the case of large radial constraints and small 6 2 ( 

for which 1 /R, 6 l), 
-900 with increasing Re 
large variations in 6, and shifts the low Reynolds number value from +,= +ISo 

to 1 3 5 O .  Figure 44 demonstrates that an increase in X, has little effect on 4, 
while minute changes in K, cause a large shift in (b3 at low Reynolds numbers. 

From Figures 45 and 46 it follows that, except for large radial constraints 

or  small 6, , 
independent of 6, 
nificantly when & and Re are small. Changes in CT from 0.5 to 0.25 shift the 
low Reynolds number values from $,, = o to <br=- qo*and produce significant vari- 
ations in #+ for all but very large Reynolds numbers. The graphs in Figure 46 
demonstrate that an increase in Rz produces an increase in #+ , particularly 

at large Reynolds numbers. Likewise, 3c, can alter $q markedly. 

f o r  w a v e s  of  t h e  f i r s t  t y p e  a n d  

0, 

The graphs in Figures 43 to 46 portray phase angles between axial wall 

decreases in Figures 43 and 44 monotonically to 
The changes in 6 considered in Figure 43 produce 

o,, generally increases. A s  can be seen in Figure 45, 4q becomes 
at large Reynolds numbers. However (3, affects +q sig- 

T h e  p h a s e  a n g l e s  b e t w e e n  f l u i d  f l o w  r a t e  a n d  p r e s s u r e , @ !  

d>b f o r  w a v e s  of  t h e  
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second type, are shown on Figures 47 to 50. Without external constraint, os 
decreases in Figure 47 from 450 to Oo with increasing Re ; while (3, and Pa 
have no apparent effect on bs and Poisson's ratio produces only a small change 
in &. From Figure 48 it follows that an arbitrary variation in Xz alters <pa 
less than 15%. Also, an increase in X ,  produces little effect on cbj. at low 
Reynolds number, but a significant increase for moderate values and a large 
decrease in 4s at large Reynolds numbers. The plots of 4' in Figures 48 and 

50 exhibit the same trends as those for 4% in Figures 41 and 42, This implies 
that for the second type of waves the phase angles between fluid flow rate and 
pressure show a similar parametric dependence as the phase angles between the 
radial displacement and the pressure. 

Figures 51 to 54 display the phase angles between axial fluid velocity on 
the axis and pressure, 4, for waves of the first type and 4, for waves of the 
second type. According to the graphs in Figure 51 <p7 decreases generally from 

45O with increasing R, attains a minimum forot26 and then approaches gradually 
to zero. 

decrease in o- produces a decrease in 0, at moderate Re. 
Figure 52 an increase in & causes a minute decrease in 6, near the minimum 
while an increase in R,  shifts the minimum to smaller values of 6, and to 
slightly larger Reynolds numbers. 

from g o o ,  attains a minimum for 7 o r  VI, a maximum for IO or 
Re 5 10" , another minimum for o(* IS or QzttJ; and finally approaches zero for 

very large Reynolds numbers. Changes in produce large relative variations 
in ba at large Reynolds numbers. For small Re a decrease in 8, causes a 
significant increase in 98 but this effect is somewhat weaker when ( &/R,)771. 
A decrease in 6 again shifts the low Reynolds value from 90' to Oo and produces 

a significant variation in @, except for o< >io. According to Figure 54 is 
strongly dependent on Xa for o( > 1 and on x, for o( ClO.  

The first type of waves has larger axial displacements for the parametric 
values defining the basic parametric case. However, from the results in Figures 
8, 23 and 27 it follows that tJ\, is inversely proportional to and M3 is in- 
versely proportional to &. Therefore, the ratio of the radial displacement to 
the axial displacement, (MA,), must become greater than one at a certain value 

Variations in e, and 6, have no apparent effect on 4, but a 

As shown in 

From Figure 53 it follows that for the basic parametric case, 48 decreases 

s 

of 42 . This change in the character of the mode shape 
inviscid limit and since is inversely proportional to 
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that the first type of waves exhibit predominantly axial displacements at low 

frequencies (large &, ) and predominantly radial displacements at high frequencies 
(small&). The same behavior was predicted for inviscid fluids by Maxwell 3) . 

For a given pressure variation the constraints may cause some inter- 
esting effects. With an increasing radial constraint the wave speed, attenuation, 
and axial displacements for the first type of waves are generally increasing while 
radial displacements, mass flow rate and axial fluid veclocity decrease. On the 
other hand, the second type of waves exhibit an increase in wave speed and a 
decrease in attenuation, wall displacement, fluid mass flow, and axial fluid vel- 
ocity on the axis with increasing radial constraint. An increase in axial constraint 
causes an increase in speed and attenuation up to limiting values and a decrease in 
radial displacement, fluid mass flow and axial fluid velocity on the axis and axial 

displacement for the first type of waves. For the second type of waves the wave 
speed and attenuation increase. 

B. Fluid Velocity Profiles 
If only the incident wave of the first type occurs, then according to @I-34) 

and fm-35) 

These two equations can also be written in the form 

Likewise, if only the incident wave of the second type occurs, 
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o r  

For these simple waves, the expressions (IV-7) to (IV-8) a re  plotted in 
Figures 55 to 58 for the basic case in the parametric analysis ( c= 0.5, 6, = 10, 

(3, = lo2, ?(le 0 =.$<3 and three different values for o(, which range from very 
small Reynolds numbers to relatively large Reynolds numbers. The axial velocity 
for the waves of the first type is generally largest in the center of the tube but the 
difference between the magnitudes of the axial velcoity on the axis and that on the 
wall decreases with increasing Reynolds number. The magnitude of the radial 

velocity for the waves of the first type is largest near the tube wall, and its vari- 
ations with is greatest for low Reynolds numbers. With increasing Reynolds 
number the phase difference between the axial velocity at the tube wall and that on 
the tube axis decreases. 

The most significant observation for the waves of the second type is that 
the change in magnitude and phase of the axial velocity across the tube is neg- 
ligible at low Reynolds numbers. This absence of an appreciable relative velocity 
or  shear at low Reynolds numbers accounts for the small attenuation of waves of 
the second type at low Reynolds numbers. At  higher Reynolds numbers, the 
magnitude of the axial velocity at the tube wall is larger than at the axis. The 
difference in magnitude and phase for the axial velocity on the tube axis and on 

the tube wall increases with increasing Reynolds number. For the radial velocity 

the variation in the magnitude across the tube is greatest and the difference in 

phase is least at low Reynolds numbers. 

C. Significance of the Constraint Parameters 
Some information regarding the order of magnitude of the external 

constraint parameters for the cariovascular system can be obtained by consider- 
ing the surrounding medium to be isotropic, perfectly elastic and incompressible. 
In such a case the stresses acting on the external surface of the artery can be 

approximated by the relations 
42 



in which the orders of magnitude of the derivatives are given by 

-P" z Therefore, \ I  

With these results and the definitions of , c, T,, and xz , one 
can write 

The lowest order for and wx is obtained for (f&)&l and 

It has been shown that the minimum value for (3* at long wave lengths is of 

order 1. Besides this, (&/p ) = 0(1) and PI = O(10) and, therefore, the 
lowest order of magnitude for the constraint parameter is 

In the parametric analysis for the inviscid limit ( and for the 
very viscous fluid limit (%+, it was found that rr = 0(1) can cause dramatic 
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changes in the propagation characteristics of the second type of wave while 
5 = O(l) has little effect upon waves of the first type. Also, it was shown 

that radial constraints only affected either type of waves when * o( to') . 
For (%/E.) 4s IOm3, (7(I)L,o, = (!)L,e.e 4 O ( o , t ) ,  and 

(X%)',,,= (E)',* o(0.l) waves of the first and second type should not be 

significantly affecied. With (Ern/&)  7 Io'z , @ I  )L,oz > O ( 2 )  , 
and (RZ) I ( c)La07 O( I) the waves of the second type shouid be rapidly 
attenuated. Likewise, waves of the first type are unaffected unless (%w/&)*~/Oz). 

Therefore, with such a surrounding medium, the modulus of elasticity must be 
at least three orders of magnitude less than that of the vessel wall in order to 

L.0. 

produce negligible constraint effects, and it must be at least two orders of 

magnitude greater than that of the vessel wall in order to effect significantly the 
waves of the first type. 
D. Application of this Analysis 

1) General Comments 
To apply the analysis presented in the preceeding sections to specific 

cases, the independent parameters o( , f3, , & , o- , ?f, and 
must be prescribed. The wave propagation characteristics (wave speeds, 

attenuation factors, and mode shapes) can then be determined from the results 
given in the parametric analysis. The four arbitrary constants , PZ , 
p3 , and pq appearing in the general solution are  determined by satisfying 

four prescribed linear conditions imposed on the dependent variables. 

using the solution given by Womersleyl'! The analysis presented in this report 
allows for a separate study of each type of waves as  well as for the general 
solution involving both types of waves. Besides this, it takes into account the 

effects of a distributed radial constraint in addition to those of a distributed 

In the past many analyses have considered only the first type of waves 

axial constraint introduced by Womersley 10) . 
This section will illustrate the possible errors  induced by considering 

merely one type of waves and by neglecting reflected waves in the solution of a 
realistic problem. To this end the solutions corresponding to each type of waves 

will be examined separately and then compared with that involving both types of 

waves. 
By considering only the first o r  radial type of waves 0 =qR), 
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Equations (III-31) and (III-34) to (III-39) reduce to 

s,) SIS/RO 
a (IV-11) 

(IV-14) 

The same equations yield for the second type of waves ( e 0 = pzA) : 

(IV-17) 

(IV-18) 

For each type of waves these results show that the radial wall displacement is 

proportional to the pressure and that the axial wall displacement and fluid 

velocity on the axis are both proportional to the instantaneous mass flow. There- 
fore, when only one type of waves and their reflections a re  admitted to the 
solution, one may not prescribe independent conditions on pressure and on the 
radial wall displacements at the same axial location. Similarly it is not 
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permissible to introduce independent conditions on the instantaneous mass flow, 
the axial wall displacement and the fluid velocity on the axis at a given axial 

location. For the solutions given above [ Equations (IV-11) to (IV-14) or 
(IV-15) to (IV-18) 3 , only two conditions are necessary to specify the arbitrary 
constants. 

e=p3= pq=O for a wave travelling in the - t direction and f'= p3= pul=.O 
for a wave travelling in the + t direction, Similarly a restriction to one wave 
of the second type implies p,= fz= 93=0 for a wave travelling in the - t 
direction and PI" pz= & =O for a wave travelling in the + t 
such single wave solution the instantaneous mass flow, the wall displacements 

and the fluid velocity on the axis are  all proportional to the pressure and, there- 
fore, only one boundary condition is necessary to determine the motion of the 
system. 

Further specialization to only one wave of the first type leads to 

direction. For 

It is important to note that in the past  all experimental investigations 
have attempted to interpret data in terms of only the first type of waves and in most 

cases the reflected waves (waves travelling in the - i3 direction) were also 
neglected. However, in several of these investigations, the experimental 

apparatus described introduces incompatibilities with the solution that were con- 
sidered for the wave motion. For example, an electromagnetic flowmeter 

restricts the radial wall displacement and according to (IV-13) and (IV-17) the 
pressure at that location will be affected. 

The parametric analysis demonstrated that the wave propagation 
characteristics of the second type of waves are more sensitive to physical and 
geometric system parameters than those of the first type of waves. Therefore, 
it is particularly desirable to acquire experimental data on the second type of 
waves if the physical parameters are to be determined from wave transmission 
characteristics. 

In order to document these comments, four sample calculations are 
given. The first three a re  intended to illustrate the possible errors  that may 
evolve by interpreting data for pressure and instantaneous mass flow in terms 
of only the first type of waves. Theintention of the last sample calculation is 
to investigate the possibility of using simple constraints to excite the second type 

of waves. 
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2 )  Sample Calculation 1 

A s  mentioned previously, in several experiments, the motion of the 

system at an arbitrary axial station is calculated from measurements of pressure 

and possibly fluid instantaneous mass flow at a given location, defined here by 

= 0 using only the first type of waves. The pressure and instantaneous 
mass flow at represent boundary conditions which can be written in the 

form &,W,t ) = iQtO)*)  and Q I C O , t )  = @@,$) . Utilizing those 
boundary conditions in (IV-11) and (IV-12) to evaluate the arbitrary constants 

and P.tr one obtains 

From these relations it follows that the presence of merely one wave travelling 
in the + f direction (incident wave) is only possible if the measured mass flow 
and pressure satisfy the condition Q ( o , t ) =  % Mge ,p(o,t)  inwhich 

through cr (3, (Jz. T, or  X, and or Xx . Likewise, there can 

only be a single wave travelling in the - % direction (reflected wave) if 

Q(o, t ) t  - 3 rJIs a ,p(a,t). For all other values of Q(o,t) /@(o,f ) 
incident and reflected waves must be present. 

i 6s 

M, and +s are exclusively defined by the system parameters and frequency 

i 4s both 
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When only waves of the second or axial type are  present, Equations 

f i C o , t ) z  @ ( O a t )  (N-15) and (IV 16) together with the boundary conditions 

and Q R Q - t ) =  Q C o i t )  yield 

(IV -2 1) 

Ro 46' In this case only the incident wave is present i f  QCo,t)/g(,o,t)= 
and only the reflected wave if Q(o,t) /qro,t)=- % w b  e.'dc. 
other values of Qb,t /@kJ,t) both waves must be present. (Note that M' 
and d, are determined by the system parameters and the frequency). 

Mba 
. For all u 

3) Sample Calculation 2 

In this sample calculation it will be shown that there can be an appreciable 

difference between the values for the pressure at a given axial location as pre- 

dicted by the solution representing only the first type of waves and by the general 
solution if  a discrete axial and/or radial displacement constraint is imposed on 
the vessel. The pressure and fluid flow rate at t e a  are assumed to be 
the same in both solutions. Then, the pressure and motion of the system are 
given by (N-13), (N-14), (IV-19) and (IV-20) when only the first type of waves 
is assumed to be present. At t = o  the following arbitrary and independent 
displacement constraints a r e  applied: 
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(IV -2 3) 

where ir; and K, are arbitrary constants. 

With (IV-23) and the conditions on pressure and fluid flow rate at i r g  

one obtains from (III-31) and (III-36) to (III 38) 

(IV-26) 

(IV - 27) 

It should be noted that with lT', I t K, these constants to pq reduce 

to the values corresponding to the first type of waves. Also,  for 

there is no radial displacement possible at t = O  and, for fT',=o , no 
axial displacement can develop at t =O . 

Kt = o , 

For the parameter values 
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c= 0,s 

and 

I 

(IV-29) 

as  a condition for only one radial wave travelling in the + t direction, the 
constants e to pq as defined by Equations (IV-24) to (IV-28) were evaluated 
and substituted into the expressions (111 31) and (ICI-38) for the pressure and 
mass flow described by the general solution. The pressure and mass flow for 
the corresponding radial wave were obtained from (IV-iS) and (IV-20). The 
results a re  given in the form of the relative errors  Cp-9 )/ 
and are  plotted in Figures 59 and 60 for various values of K, 
Figure 59 it follows that a rigid displacement constraint produces an error  in 
the magnitude of the mass flow which increases with S and is of the order of 

20% at 
is more significant than that for the pressure when only a radial constraint 
is present. However, in either case, the radial constraint has a more pro- 

nounced effect. 

and (Q-QR)/QR 
and n, . From 

9 R  

t = 20 Ro . The magnitude of the relative error in the mass flow 

4) Sample Calculation 3 

In the previous example both discrete displacement constraints were 

applied at the axial location where also the pressure and mass flow were 

prescribed. Often the vessel segment of interest is subjected to constraints 
at more than one location. For example, one may have electromagnetic flow 
meters at both ends of the segment exerting radial constraints. To simulate 
such a situation, a model is considered in which the pressure and mass flow at 
the upstream end of the tube a re  prescribed, and radial constraints are applied 
at both ends of the tube. The constraints are  again expressed in the form: 

(IV-30) 

By specifying the pressure and mass flow at S U O  , one obtains from 
(rv-19) and (rv-20) 
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(IV - 3 2) 

and with (IV-30) the general solution for pressure and mass flow can also be 
determined. The relative error for pressure and mass flow in this case are  

given by 

(IV - 3 3) 

(IV-34) 
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(IV-35) 

(IV -36) 

(Iv-37) 

(IV -38) 

(N-41) 
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(IV -42) 

(IV -44) 

Results for 

(IV-46) 

W S  and - RoMs= ' ' are  shown on Figures 61 and 62. Note that with (3-6s = 0 
equations (IV-31) and (Tv-32) predict the first type travelling in the +- 
while 6- bs = l$O" gives a wave travelling in the - t direction. The 

results in Figures 61 and 62 display the relative errors for pressure and mass 

flow. The phase of these errors  is in the neighborhood of 90'. It is apparent 
that in this case the relative errors  are much larger than in Sample Calculation 

2. 

arection, 

A comparison of the variations of pressure and mass flow at an axial 
location as  predicted by the first type of wave in the absence of axial constraints 

with those obtained from the general solution satisfying the radial constraints 

is also of interest. Figure 63 shows the results for 
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calculated from (IV-31) to (IV-34) by using the parameters given in (N-45)  

together with 

It is evident that the approximate solution in the form of the first type of waves 

has the same basic pattern as the general solution. However, there is a 
considerable phase difference between them. Also, the approximate solution 

overestimates the magnitude of the mass flow by about 12%. 

5) Sample Calculation 4 

The purpose of this example is to investigate the generation of waves of 
the second type by simple discrete displacement constraints applied to a tube 
of given length. The results in the previous two examples showed that discrete 
radial constraints could produce significant changes in pressure and mass flow 
as predicted by the terms of only the first type of waves. Therefore, the type 
of constraints introduced in Sample Calculation 3 may be considered a device 
to generate waves of the second type. A reasonable measure for the effectiveness 
of exciting the second type of waves is the difference in the arbitrary constants 

p, , pz , p3 , pq , as defined by the general solution satisfying all four 
boundary conditions and those corresponding to the approximate solution involving 
only the second type of waves and complying with the pressure and mass flow 
boundary condition at 3 = o 

The solution in terms of the second type of waves is given by (IV-15) to 
(IV-18), (IV-21) and (IV-22), where the constants in (IV-15) and (IV-16) a r e  

(IV-47) 

(IV-48) 

54 



Substituting the pressure and mass flow conditions at ZcO together with 

into (111-31), (111-36) and (111-38) one obtains 

where 

(Iv-54) 

(IV-5 5) 
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(IV -5 6) 

(IV-59) 

(IV-60) 

(IV-63) 
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The difference in the arbitrary constraints a re  nondimensionalized with respect 

to the magnitude of the pressure at Z=o and are  given in Figures 64 and 65. 

where the comments 

I (axial wave in + S dir. ) 

-i 110. 
O , W 7  Q. (radial wave in + t dir.) 

(radial wave in - 2 dir. ) ( 70° 
0,6L(7 

in parentheses indicate the wave type which would have the 
corresponding pressure-flow relationship at S = 0 . It is obvious that the 
differences in the arbitrary constants a re  zero for 
condition that the radial displacements at t = o  and .2=L are those associated 

with a wave of the second type. 

K,L I which is the 

The results of this and the previous two sample calculations demonstrate 
that any application of discrete constraints induces the second type of waves. 
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V. COMPARISON OF ANALYSIS WITH EXPERIMENTAL RESULTS 

A.  Elastic Wall Analytical Results 
1) Experimental Results of Van Citters14). The experimental results 

of Van Citters are of particular interest since they corroborate the existence 

and some of the propagation characteristics of the second type of waves. In 
these experiments a Penrose tube of 100 cm length was connected to rigid tubing 
at both ends. The tube was filled with water or glycerin. At  one end of the 
tube a step pressure pulse was produced and near the other end the tube was 
instrumented to measure pressure and axial and radial wall displacements. 

From oscillograph recordings of the disturbances in pressure and wall 
displacements, Van Citters concluded that two types of waves were generated 
whose speeds were approximately 6m/sec. and 30 m/sec. when the tube was 
filled with water. The pressure and radial wall displacement appeared to travel 

at the lowest speed while the axial wall displacement travelled at the faster speed. 
On the basis of these observations, it was concluded that two independent waves 
occur; a longitudinal wave with strong axial displacements and a pressure wave 

accompanied by large radial wall displacements. Furthermore , it was shown 
that a manual griping of the tube, which simulated a distributed external con- 
straint, produces essentially a complete attenuation of the longitudinal waves. 
Besides this the amplitude of the longitudinal waves was reduced considerably 
by substituting glycerin for water. 

The results of the parametric analysis show that the magnitude of the 
pressure variation associated with the second type of wave is much smaller 

than that for the first type of wave. Consequently, the step pressure pulse 
should excite primarily the first type of waves. However, Sample Calculations 
2 and 3 demonstrated that the clamps holding the tube onto the rigid tubing will 

require both types of waves to be generated. The exact character of the clamping 
was not reported and, therefore, the relative strengths of the two types of waves 
can not be determined theoretically. But it is apparent from the oscillograph 
recordings that the pressure fluctuations associated with the second type of 
waves a re  much smaller than those for the first type of waves. A comparison 

of the results on Figures 23 to 30 shows that the magnitude of the axial dis- 
placements for the second type of waves can still be much larger than those for 

the first type of waves, even though the magnitudes of the radial wall displacements 
and pressure fluctuations are  extremely small. The parametric analysis also 
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demonstrated that the dissipation of the second type of waves is larger and 

specifically predicts a large increase in the dissipation with a weak distributed 

constraint (the manual gripping). Finally, the ratio of wave speeds i(ct/C, Z 5 )  

is in agreement with the analytical predictions. 
2) Experimental Results of Anliker , et al. 13). During the past two 

years wave transmission experiments were conducted on anesthetized dogs. 
Finite trains of small sinusoidal pressure waves were induced in the thoracic 
aorta of mature mongrel dogs weighing between 20 and 40 kg. These waves were 

generated by an electrically driven impactor which produced small indentation 
of the vessel wall. The pressure signals had amplitudes that were generally less 
than 5mm. Hg peak to peak. Typical results obtained in these experiments for 
frequencies between 60 and 200 cps. a r e  illustrated in Figures 66 and 67. From 

Figure 66 it follows that the thoracic aorta is only mildly dispersive with respect 
to pressure waves in this frequency range as predicted by the theoretical results 
given in this analysis. The attenuation of such waves in the form of the amplitude 
ratio k/R, 
is shown in Figure 67. It was found that 

as a function of the propagation distance measured in wave lengths 

independent of frequency. No waves of the second type were observed in these 

experiments. 
2- w -& For the thoracic aorta and frequency between 60 and 200 cps, o( - 3 R, 

is a large quantity. Therefore, the experimental results may be compared with 
the limiting solution for large values of OC given in section 111. Measurements 

of the aorta showed that 

The viscosity coefficient of the blood is assumed to be 71 

the vessel wall is considered incompressible , CY E 1/2 . A s  limiting phase 
velocity for large frequencies the experiments yield 

0.0 5 Cm%%~c and 
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Since the aorta was surgically exposed in this experiment the vessel is not 

subjected to distributed constraints and, therefore, 
values for c, , R, , and 7) one obtains 

c= 0 = rt . With these 

10z, 5 CPS 2. F 
1 = G,OY)GCfS (3, = F 

/ 

The quantities K,' , 
(In-33) and (111-53) yield 

and b(% a re  real and positive in this case and hence 

Furthermore, the predicted damping of the sinusoidal waves is given by 

This implies that &/A, 
However, the coefficient of S/A 

calculations show that K, 21 

coefficient of t /h ,  is only K7 'C 0,061 for F = 60 cps. and 
decreases as the frequency increases. 

is an exponential function proportional to a/ A ,  . 

and 4 2  38.0 at 60 cps. and, therefore, the 

is not independent of frequency. Also, 
I 

E-Z 
From this result one may conclude that the viscosity of the blood can 
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only account for a small fraction of the attenuation of the sinusoidal pressure 
waves observed in the thoracic aorta of anesthetized dogs for frequencies between 

60 and 200 cps. Also, since the aorta was exposed, any attenuation of the 
waves due to the radiation of energy into the surrounding medium may be dis- 

regarded. Therefore, the strong attenuation of the sinusoidal pressure waves 
must be attributed to damping mechanisms in the aorta wall. 

B. Solution With Viscoelastic Wall and Large Reynolds Number 
To account for the high attenuation of the pressure waves observed in the 

experiments the vessel wall is now assumed to behave like a viscoelastic solid. 
Moreover, since the frequencies of the sine waves generated in Reference 13 
are generally above 20, the corresponding values for o( may be considered as 
large. For comparison, the analysis can, therefore, be restricted to large 

Reynolds numbers. 
According to the correspondence principle , the large Reynolds number 

solution for viscoelastic walls can be obtained simply by replacing Young's 
modulus E and Poisson's ratio C in Equations (111-53) to (III-71) by their com- 
plex counter parts 

In the resulting relations the quantities w E V A ,  , w cv and I le% are  
considered as small parameters, which allows the solutions for the wave speeds, 

the attenuation factors, the mode shapes and phase angles to be written as: 
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07-91 

(V-18) 
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(V-19) 

(V-21) 

(V-23) 

(V-24) 

(V-25) 
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(V-28) 

(V-29) 

(V-31) 

(V-33) 

(V-34) 

(V-35) 

The remaining constants kR, , KeR , ebAand are  obtained 
from (III-67) to (m-71) by substituting EA and C% for E and 0- . 

In many cases the parameter (\-r,) /ebR is small and the limiting 
form of the solution defined by (V-4) to (V-36) is nearly unaffected by variations 

in this parameter. By taking (1- r,)&&= o the above solution reduces to: 
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(V-37) 

A* =-I (V-38) 

(V-39) 

(V-45) 

(V-46) 

(V-47) Gs, = 0 
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(V-50) 

(V-51) 

where K ~ K  and k,, are  given by (V-30) and (V-34). These equations can 
now be substituted into relations (V-5) to (V-15) to obtain the wave speeds, 
attenuation, mode shapes and phase angles. 

Both limiting solution forms given here exhibit no effects of the visco- 
elastic properties upon the wave speeds. For elastic walls Womersley ' s  analysis 
produced the result 

CO 
(V-52) - c,= x - i Y  

where the axial and spatial variation of all quantities is given by the function 

and x and Y are tabulated in Womersley's report. Then, c, / C ,  contains 
both wave speed and attenuation factor. Taylor in Reference 1 7  has shown that 
substitution of the relations in (V-4) into Womersley's solution yields 

h 

or,  in the form of the present analysis, 
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(V-54) 

where ( c  I / C O  )eLRsT,c and CS, ),,&,)ELAST,C are the quantities 

for elastic walls. For large OC , cb ,A,/&) I , b? I and 

(V-57) 

Therefore, Taylor's analysis also shows little dependence of the wave speed on 
the viscoelastic behaviour of the wall. Also, for large o( Taylor's results 

a re  of the same form as those given here, except that the coefficients of 
&/EL and cq, are  constant i n  Taylor's analysis. 

McDonald and Gessner in Reference 5 have shown that the data of 
Bergel can be presented in a form utilizing the function defined in (V-53). 

(V-58) 

where 
Bergel. 

4, is the viscoelastic parameter presented as experimental data by 

Comparison of a Viscoelastic Damping Parameter Computed from C. 

Anliker's Data with Previous Results 

A s  in the comparison of experimental data with the results of the elastic 
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wall analysis essential geometric and physical quantities a re  

Z8 'L 
Since (3,&= 3 QtC r7,s 
quantity ( \-rj ) /&% 

(.rl=O) 

obtains 

for frequencies less than 200 cps. , the 

is small even for no distributed radial constraint 
. Making use of this fact in the limiting solution for large o( , one 

(V-59) 

(V-60) 

A s  shown in (V-3), si X i / &  is the attenuation coefficient, Ai , 
introduced by Anliker in (V-1). From the experimental data it follows that 

%,2 0,@7 c S, a, . The substitution of this value into (V-59) yields hl 

(V-61) 

as the viscoelasticity contribution to the attenuation coefficient, 8, 
contribution can be interpreted as a viscoelastic damping parameter. It is 
plotted in Figure 68 as a function of frequency together with the experimental 

This 

data obtained by Anliker et al. 13) and Bergel 4) . 
According to the data of Bergel, @6 is sufficiently small so that 

(V-58) can be approximated by 
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It should be noted that Bergel's results are based on a different viscoelastic 
model and on measurements conducted in the excised vessels. His viscoelastic 
attentuation parameter increases with frequency. 

For frequencies above 60 cps. the theoretically predicted variation 

of the viscoelastic attentuation parameter is in good agreement with the experi- 
mentally measured attenuation coefficient due to all sources of attenuation. 
From relation (V-61) it follows that the damping contribution produced by the 

viscosity of the blood is negligibly small at higher frequencies. 
The viscoelastic parameter in (V-61) and the expression for 2Ww in 

(V-53) have the same coefficient for E"/& but the coefficients for &i, are 
of different sign and magnitude. The terms underlined in Equation (V-21) and 
(V-39) define the coefficient of in . Additional data are necessary to 
the individual values of E,, , ER , ev and . 
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VI. CONCLUSIONS 
The general solution of the boundary value problem posed in this 

analysis produces two types of waves travelling along the axis of the vessel. The 
first or slower type of waves has been studied extensively by Womersley and 

however, without considering the effects of constraints. The results of Atabek 
and Lew"), Womersley"), and the present analysis are in good agreement 

for corresponding values of the system parameters. The results presented here 
for the large Reynolds number limit are also in good agreement with those of 

others. Recently both types have been investigated by several authors 3)s 11), 15),18) 

Maxwell and Anliker 3) for an inviscid fluid. 

In the present analysis as  well as in those of Womersley") and Atabek 
and Lew"), the fluid viscosity appears in the solutions only through the non- 
dimensional parameter o( = %)=which is essentially the square root of an 
unsteady Reynolds number. In the parametric study given here it was shown 
that a variation in OC produces the most significant changes in the wave 
propagation characteristics for theslow waves when 

fast waves when o( > I . The frequency appears not only in% , but also in 
the parameter &= Co/(Row) which plays an important role in determining 
the propagation characteristics of the fast waves , particularly when the parameter 
o( has a limiting effect. 

OC <S and for the 

The wave speed for the first type of waves in the presence of a weak 

radial constraint increases monotonically with o( from zero at O(=O and 
reaches asymptotically a value which differs by less than twenty per cent from 
the Moens-Korteweg speed, co . For the second type of waves and very small 

values of o(, mild distributed external constraints (axial and/or radial) the 
wave speed is relatively insensitive to variations in o( . Furthermore, it is 

1.8 Co for o(C: \ , and with increasing 9( it approaches an approximate 
limit toward value of 5 ce . A distributed radial constraint can produce an 
order of magnitude variation in the wave speed for the first type of waves while 
a distributed axial constraint merely produces a variation of less than 15%. 

However, both a radial or axial constraint can cause an infinite change of the 
wave speed for the second type of waves. 

Regardless of the constraints, the first or slower type of waves are  

strongly attenuated for 4 C \ 
diminishes rapidly with increasing o( . In the absence of constraints the waves 

and the attenuation due to the blood viscosity 
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of the second o r  faster type exhibit small attenuation due to the viscosity of the 

blood for d. C .z and 6 > 100 . It assumes a maximum for 4 ?-,8 
However , in contrast to the slow waves, the attenuation of the second type of 
waves is strongly affected by distributed external constraints. 

For  the first type of waves the wall displacement has a dominant radial 

component at high frequencies but at low frequencies the axial displacement 
component dominates. The second type of waves always has a dominant axial 
displacement component. Both of these statements a r e  true for  weak external 
constraints. With strong constraints, the displacement mode shape can be 
altered considerably. The wall motions associated with the two types of waves 
indicate that the faster type of waves involves a strong shearing interaction 

between the blood and the vessel wall while the slow type of waves should exhibit 
relatively strong pressure fluctuations , particularly at higher frequencies. 

The second type of waves were found to be much more sensitive to 
variations in the system parameters than the first type of waves. The phase 

angle between pressure and radial wall displacement for the first type of wave 
a re  almost negligible. The investigation of the effects of discrete constraints 

such as clamps or  electromagnetic flow meters on the pressure and instantaneous 
mass flow has demonstrated that such constraints may produce significant 

changes. 

obtained by Van Citters from a mechanical model of a blood vessel showed 
qualitative and some quantitative agreement. In particular Van Citters' results 

verify the theoretical prediction that weak distributed external constraint can 
almost completely attenuate the second type of waves. This fact may account 
for the lack of in vivo evidence of naturally occurring waves of the second type. 

A comparison of the present analysis with the experimental results 

The application of the present analysis to the data of Anliker, et al, 

however, has indicated that the viscosity of the blood does not cause sufficient 
attenuation nor the proper variation of the attenuation with frequency. Since 
experimental information is usually obtained only for larger Reynolds numbers, 
the solution for this limiting case was modified to include wall viscoelasticity, 

and the resulting system of equations was applied to predict the viscoelastic 
attenuation parameter for waves of the first type. With one exception5) this 

parameter is considerably larger than that previously reported. 
For high frequencies the blood viscosity contributed only a few percent 
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to the attenuation parameters, 5; A; /Ro . However, with frequency extending 

down to 1 cps. and no external constraints, the viscosity contribution is of the 

order of 14% for the first type of the order of 65% for the second type of waves. 

Two features of the solution are questionable and both are related to 
limitations of the analysis. First, the limitation to A/&, >> I is required 
in the linearized equations of motion for the fluid and is also implied in the 

application of a membrane analysis for the displacements of the vessel wall. 
Therefore, with a fluid of constant viscosity, the analytical results obtained for 
large o( or equivalently large W will be questionable unless the wave speed 

also increases such that X = c& still satisfies > / . Second, the 
limitation <?$r)b= y, CC J appears to be unrealistic when o( approaches 

zero since C ,  also approaches zero. Unfortunately no experimental data is 
available for small value of w . In a more realistic study of the first type 
of waves with small * the convective terms have to be included in the Navier 

Stokes equations. 
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First Type of Waves as a Function of Reynolds Number 
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Figure 29. The Mode Shape Parameter for the Axial Displacements of the 
Second Type of Waves as a Function of Reynolds Number 
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F'igure 30. The Mode Shape Parameter for the Axial Displacements of the 
Second Type of Waves as a Function of Reynolds Number 
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Figure 31. The Mode Shape Parameter for Fluid Mass Flow Rate with the First 
Type of Waves as a Function of Reynolds Number 
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Figure 32. The Mode Shape Parameter for Fluid Mass Flow Rate with the First 
Type of Waves as a Function of Reynolds Number 
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Figure 33. The Mode Shape Parameter for Fluid Mass Flow Rate with the Second 
Type of Waves as a Function of Reynolds Number 
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Figure 34. The Mode Shape Parameter for Fluid Mass  Flow Rate with the Second 
Type of Waves as  a Function of Reynolds Number 
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Figure 35. The Mode Shape Parameter for Ada1 Fluid Velocity on the Axis with 
the First Type of Waves as a Function of Reynolds Number 
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Figure 36. The Mode Shape Parameter for Axial Fluid Velocity on the Axis 
with the First Type of Waves as  a Function of Reynolds Number 
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Figure 37. The Mode Shape Parameters for M a l  Fluid Velocity on the Axis 
with the Second Type of Waves as a Function of Reynolds Nurnber 
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Figure 38. The Mode Shape Parameters for Axial Fluid Velocity on the Axis 
with the Second Type of Waves as a Function of Reynolds Number 
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Figure 55. Radial Distribution of the Magnitude of the Axial Velocity 

129 



n 
c9 x 
Y 

0.2 

I 
0.6 "'i r'Ro I 

- 
0.8 1.0 

I 
-40' I I I I I 

Figure 56. Radial Distribution of the Phase of the Axial Velocity 

130 

8 b 



0.014 

0.012 

0.010 

i i I I 

0.006 

0.004 

0.002 

0 
0 02 0.4 0.6 0.8 I .o 

r 
R* 
- 

Figure 57. Radial Distribution of the Magnitude of the Radial Velocity 
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Figure 58. Radial Distribution of the Phase of the Radial Velocity 
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Figure 59. Magnitude of Relative Errors in Pressure and Fluid Mass Flow for 
Sample Calculation 2 
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Figure 60. Phase of Relative Errors in Pressure and Fluid Mass Flow for 
Sample Calculation 2 
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Figure 61. Magnitude of Relative Errors in Pressure and Fluid Mass Flow for 
Sample Calculation 3 
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Figure 62. Phase of Relative Errors in Pressure and Fluid Mass Flow for 
Sample Calculation 3 
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Figure 63. Variation of Pressure and Fluid Mass  Flow for Sample Calculation 3 
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Figure 64. Magnitude of the Relative Error in Arbitrary Coefficients for 
Sample Calculation 4 
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Figure 65. Phase of the Relative Error  in Arbitrary Coefficients for Sample 
Calculation 4 
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